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Introduction
The use of statistics is an integral component of sports. The number of home runs hit
in baseball, three-point shots made in basketball, and touchdowns scored in football
are means by which analysts and fans alike determine “success” for specific players or
teams.

Which (if any) of the varied statistics produced in a football game are vital in deter-
mining a game’s outcome? Using 1985 data, Wagner [8] studied 90 U.S. Division I col-
legiate football games and 98 National Football League (NFL) games. He produced a
multiple regression model, with the margin of victory as the dependent variable. Some
of the independent variables in the model included per-game differences in passing
yardage, rushing yardage, number of turnovers, penalty yardage, and the number of
first downs. His results showed close similarity between the parameter estimates in
collegiate and professional football.

Hurley [5] used a multiple regression model to analyze NFL playoff games from
1970 to 1993. Again using margin of victory as the dependent variable, he was able to
show that turnovers and rushing yardage are two extremely important determinants of
success in a football game.

Goode [2] used factor analysis to determine those variables that were significant
predictors of the outcomes of football games. Examining NFL games played between
1969 and 1973, his model successfully predicted the outcomes of 75% of the regular
season games and 86% of the playoff contests.

Investigating Ivy League (collegiate) football games from 1964 to 1966, Haber-
man [3] developed a linear regression model to determine those statistics important
for winning football games. He found that, among others, rushing yardage and com-
pleted passes were critical in determining the outcome of games.

Besides professional and collegiate football, other sports have been examined by re-
searchers. Lo, Bacon-Shone, and Busche [6] created a logistic regression model for an-
alyzing the outcomes of horse races. Using actual data from race tracks in Hong Kong,
New Jersey, and Japan, they determined the likelihood of horses finishing in particular
positions for specific races.

Crowe and Middledorp [1] formulated a logistic regression model for the sport of
cricket. They analysed results from cricket matches played in Australia from 1977
to 1994, to determine if Australian umpires were biased against visiting teams. They
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discovered that leg before wicket decisions, a highly controversial judgement call,
were more frequently assessed to visiting countries.

The purpose of this paper is to present a logistic regression model for analyzing
those game statistics important in determining the outcome of football games in the
Canadian Football League (CFL). Many of the empirical analyses cited in this paper
have used multiple linear regression. If one is strictly concerned with the final outcome
of the game, rather than point differential, logistic regression (with its use of a dichoto-
mous dependent variable) ought to be well suited for analyzing football game results.
Ties are extremely rare, so the dependent variable could concentrate on either wins or
losses.

Whereas previous analyses have lumped all teams together (by using complete sea-
sons of data), this analysis will focus on three specific teams (categorized as very good,
average, and poor), and their performance over a seven-year period. In this way, one
may learn if differences exist in those statistics that are vital for a very good team
versus those that are important for a poor team. If differences do result and should
“winning mean everything”, then football coaches and general managers ought to em-
phasize those game strategies essential to victory for the very good team.

This analysis does not rest on a “snapshot in time”, but consists of data gathered
for an individual team over a long duration. Table 1 shows the cumulative record of
CFL teams between 1989 and 1995. The team with the greatest number of wins over
this period (Calgary) was chosen as the “very good” team in the study, while the squad
which earned the least number of wins (Ottawa) represented the “poor” team. The “av-
erage” team was the one whose number of victories most nearly equalled its number
of losses (Saskatchewan).

Table 1. Cumulative Records of CFL Teams,
1989–1995

Record
Team (Wins-Losses-Ties)

Calgary 90-35-1
Edmonton 86-40-0
Winnipeg 73-53-0
Saskatchewan 61-65-0
British Columbia 58-66-2
Hamilton 50-76-0
Toronto 50-76-0
Ottawa 38-88-0

Note: This table only includes those teams which partic-
ipated in the CFL between 1989 and 1995. It does not
include various American-based CFL teams which
joined the league beginning in 1993.

Model
Logistic regression is a powerful technique for analyzing those situations in which
the dependent variable is discrete (Hosmer and Lemeshow [4]). Some its applications
include medical research (presence or absence of heart disease) or consumer studies
(several different response categories for a new product development).
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In a linear regression model, the mean value of the outcome variable (given the
value of the independent variable) is termed the conditional mean. It may be expressed
as an equation linear in x , such as

E(Y | x) = β0 + β1x .

In a logistic regression model, the conditional mean may also be represented by the
expression E(Y | x). However, the equation is no longer linear in x . In fact, we have

E(Y | X) = e(β0+β1 X)

1 + e(β0+β1 X)
.

The dependent variable used in this paper’s logistic regression model is Y ∈ {0, 1},
with 0(1) indicating a loss (win) for the team (very good, average, or poor) under
consideration.

The actual logistic regression model employed is

E(Y | X) = e(Z)

1 + e(Z)

where Z is

βo + β1DIFF RUSH + β2DIFF PASS + β3DIFF INT

+ β4DIFF FUMB + β5DIFF SACK.

The independent variables, similar to those illustrated in Wagner [8], represent var-
ious football game statistics. They are:

DIFF RUSH: The difference in rushing yardage
DIFF PASS: The difference in passing yardage

DIFF INT: The difference in the number of interceptions
DIFF FUMB: The difference in the number of fumble recoveries
DIFF SACK: The difference in the number of quarterback sacks

Thus, if Calgary rushed for 150 yards in a game while its opponent rushed for 100
yards, the DIFF RUSH variable would have a value of 50 for Calgary.

An interesting statistical feature of these data is that, in games involving any two
of the three teams, the outcomes of the games are not independent. That is, if Calgary
played Saskatchewan and Calgary won, then Saskatchewan would have lost. In order
to guard against dependencies in the data, we removed all games between any two of
these three football teams. This resulted in a sample size of 92 for both Calgary and
Saskatchewan, and 99 for Ottawa.

Results
The SAS/STAT R© [7] statistical software package (using PROC LOGISTIC) was em-
ployed to obtain all model results. Table 2 indicates the results of the logistic regression
analysis. Variable coefficients are shown in the table along with the corresponding p-
values in parentheses. We note that the β1, β2, . . . , β5 coefficients indicate the change
in the log odds of team victory for a one unit increase in the particular explanatory
variable.
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Table 2. Model Results

Team

Variable Calgary Saskatchewan Ottawa

βo 0.9948∗ −0.8210 −0.8340∗∗∗
(0.0106) (0.1248) (0.0046)

DIFF RUSH 0.0173∗∗∗ 0.0529∗∗∗ 0.00743∗
(0.0032) (0.0011) (0.0353)

DIFF PASS 0.0148∗∗∗ 0.0173∗∗∗ 0.00427
(0.0015) (0.0030) (0.0828)

DIFF INT 0.8136∗∗∗ 1.4184∗∗∗ 0.3423∗
(0.0085) (0.0011) (0.0397)

DIFF FUMB 0.3451 0.9074∗∗∗ 0.5303∗∗∗
(0.2912) (0.0066) (0.0098)

DIFF SACK 0.4199∗ 1.1287∗∗∗ 0.4638∗∗∗
(0.0151) (0.0027) (0.0004)

Note:
∗∗∗Significant at the 1% level
∗Significant at the 5% level

An analysis of these findings reveals differences between those factors that are im-
portant in predicting a game’s outcome, given the team under consideration. For in-
stance, differences in rushing yardage and the number of interceptions were significant
at the 1% level for the very good and average teams (Calgary and Saskatchewan, re-
spectively) in our study. These game statistics were significant at the 5% level for the
poor team (Ottawa). In addition, differences in passing yardage were highly significant
for both Calgary and Saskatchewan while not significant at all for Ottawa.

On the other hand, differences in the number of fumble recoveries were not sig-
nificant for Calgary, while they were highly significant for Saskatchewan and Ottawa.
Finally, differences in the number of quarterback sacks were significant at the 5% level
for Calgary, while they were significant at the 1% level for the average and poor teams.
Further, we note that the estimated coefficient of the quarterback sacks variable for the
average team (Saskatchewan) is roughly 2.5 times larger than those coefficients for the
very good or poor teams. This would indicate that this variable has a larger effect on
the log odds of the team’s victory than the corresponding variable for the other two
teams.

What does this mean? Quite simply, the better the team in the CFL, the more likely
it is to rely on rushing and passing yardage as well as the number of interceptions in
winning football games. A poor team is less likely to depend on these factors. Con-
sequently, football coaches, in an effort to build championship squads, should try and
control the line of scrimmage (through rushing and passing yardage) and record more
interceptions than their opponents.

In an effort to determine how well the logistic regression model predicted actual
game outcomes, we generated a table of predicted versus actual outcomes. We ob-
tained the number of times the model predicted a probability above 0.5 as well as the
number of occurrences in which the probability was under 0.5. (Since the likelihood
of a predicted probability exactly equal to 0.5 was extremely rare, we used > 0.5 and
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< 0.5 as our cutoff). We then compared these predicted results to the actual outcomes
(win or loss) of the respective football games.

Table 3. Predicted vs. Real Outcomes: Calgary

Predicted ResultsActual
outcome P > 0.5 P < 0.5 Total

Win 62 4 66
Loss 9 17 26

Total 71 21 92

Probability of correct model result = 85.9%
(79 out of 92)

Table 4. Predicted vs. Real Outcomes: Saskatchewan

Predicted ResultsActual
outcome P > 0.5 P < 0.5 Total

Win 38 5 43
Loss 4 45 49

Total 42 50 92

Probability of correct model result = 90.2%
(83 out of 92)

Table 5. Predicted vs. Real Outcomes: Ottawa

Predicted ResultsActual
outcome P > 0.5 P < 0.5 Total

Win 20 12 32
Loss 9 58 67

Total 29 70 99

Probability of correct model result = 78.8%
(78 out of 99)

Each of the three models does quite well in predicting actual game outcomes.
The probability of a correct model result was 85.9%, 90.2%, and 78.8% for Calgary,
Saskatchewan, and Ottawa, respectively.

Tests were done to determine the extent of any multicollinearity in the respective
models. A series of linear regressions were run by regressing a given independent vari-
able on the remaining ones. If a certain regression produced a very high value of R2,
then a multicollinearity problem may exist in the data. For our regression models, the
highest such R2 was 0.2294. Multicollinearity does not appear to be a problem in this
data set.
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Conclusions
These findings appear to suggest that differences exist between those factors that are
significant in determining victory for teams of different abilities. Researchers should
not lump teams together (as they have previously done) in an attempt to determine
critical factors.

In football, the two prime sources of turnovers are interceptions and fumble recov-
eries. Previous empirical analyses have combined them into one variable, “turnover”.
However, the model suggests that interceptions are the more important game statistic
(they were significant at the 1% level for Calgary and Saskatchewan, while significant
at the 5% level for the poorest team, Ottawa). Perhaps this indicates that more em-
phasis ought to be placed on interceptions, rather than combining the two sources of
turnovers.

Some game statistics were purposely not included in these logistic regression
models (e.g., time-of-possession statistics and return yardage (from punts and kick-
offs)). The desire to keep the model as parsimonious as possible meant that only a
handful of the statistics collected in a game could be used.

One of the shortcomings of this type of modelling is that the binary dependent
variable fails to differentiate between levels of victory. Some may argue that the game
statistics from a 50-point victory would be markedly different from those obtained
in a 1-point win. The logistic regression model, however, is not concerned with the
margin of victory, only with the specific outcome (win or loss). This concern does
have some merit. Nonetheless, it ought to be remembered that football teams earn two
points in the standings for a victory regardless of point differential. When the season
is completed, it is the number of wins that determines the first-place finisher, not the
cumulative margins of victory. As a result, logistic regression modelling can be an
important tool in determining the critical factors to a team’s overall success.
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